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Game Theory, Auctions, and Deep Learning

Abstract

Game Theory is the analytical study of entities acting in a system to
maximize their own gain. We go into detail about the core concepts of
game theory. In particular, we discuss theoretical auction mechanism
design, including a characterization of ideal auctions that we will apply to
various auction situations. We also cover a deep learning model
previously introduced by Paul Ditting et al. that is capable of producing
auction results that approach the theorized optimal results by a number
of measures, including auction revenue, while maintaining a number of
additional desirable attributes. We also touch on potential modifications
to the aforementioned deep learning architecture, which could
theoretically decrease training time and increase robustness.

Motivation

Auctions are a fundamental, inseparable part of game theory that come
up everywhere in human behavior. As we will discuss later, even a
system as simple selling an item can be characterized as an auction with
one item and one bidder. Hence, any analysis of auction design has the
capacity to have an incredible impact on economics. Designing optimal
auction mechanisms is a notoriously difficult task requiring the
construction of an allocation rule and a payment rule, and we still do not
have a full construction for these rules in a 2-bidder, 2-item auction. We
can, however, create increasingly good approximations for these rules
using such techniques as deep learning. By developing models, we can
improve performance and gain insight into ideal theoretical mechanisms.

What is Game Theory?

Game Theory: the branch of mathematics concerning the analysis of
strategic interaction between competitive participants

Nash Equilibrium: a stable point at which no single player in a game can
change a single action and gain from it

Dominant Strategy: a strategy for a single player that is the best
possible strategy no matter what any other player chooses to do.

Utility: the amount a player gains (opposite of Loss)

Payoff Matrix: shows the utility for each player under each strategy

Let’s look at an example:

Suppose we have N countries subject to pollution. Each country has the
choice to control their pollution production.

If a country C chooses not to control pollution, C does not have to pay
expenses to do so, but every country, including C, must then spend $1
dealing with the consequences of pollution.

If C chooses to control pollution, C must pay $3, but each country then
does not have to spend the $1to deal with it.

1. If every country controls pollution, every country pays $3.

2. If no country controls pollution, every country pays $N. If we suppose
N is much larger than 3, this is far from the ideal solution. Let’s analyze it.

Consider the first situation. For any country C, C must pay $3 to control
pollution. Suppose instead C refuses to control pollution production. C
must now pay only $1to handle the pollution it is producing. C’s utility
has increased by $2, at the expense of every other country increasing its
loss by $1. It turns out every country can increase its utility (decrease its
loss) by $2 by choosing to do the same thing. We have suddenly gone
from the ideal first situation to the worst case second situation. Now
every country must pay $N.

Suppose C considers paying the $3 to control pollution. Then C must
pay $(N + 2) in total, increasing C’s loss by $2. We have reached a Nash
Equilibrium: no country benefits by changing their strategy. In fact, we
have shown that every country’s dominant strategy is to not control
pollution.

Prisoner’s Dilemma — Payoff Matrix
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Definitions

Auction: a model in game theory consisting of m items, n bidders, and
an auctioneer whose responsibility is to assign the allocation and pricing
of items dependent on the bids

A=(X,p)
where X is an allocation rule and p is a payment rule

Bid: a function for the amount a bidder claims to value a set of items
bi: [0, )™ » = o bi S Vi, i € N[1, n]
where V. is the set of all possible bid/valuation functions for bidder i

Valuation: a function for the amount a bidder truly values a set of items
v: {0, )" » R* o v EV,
Allocation rule: a rule that assigns which items a bidder is allocated
X:V = {0, 1}"
whereV=MV=(V,V,,..,V)
i 1 2 n

Payment rule: a rule that assigns the payment a bidder must pay
p:V=»R°

Social Surplus: the extent to which the expectation that the bidder that
values an item the most gets it is satisfied

S(X) = 2v(X (b)), b € V

Regret: the difference between the maximum possible utility of a bidder
and their realized utility

What Does an Ideal Auction Look Like?

Dominant Strategy Incentive Compatible (DSIC): every bidder gets the
highest possible gain from the auction by bidding their exact valuation

V(X(v, b)) - pv, b)>V(X(b,b))-p(b,b) Vb €V

where b, € V _is the vector of all bids with bidder i’'s entry removed

Maximum Social Surplus (MSS): the allocation is assigned in a way that
maximizes the total possible valuation of those items

X= argmax,, (S(X)) = argmax,, ( Zvi(X (b))

i
Polynomial Time: the algorithm computing allocation and payments runs
in polynomial time with respect to the number of bidders and items

O(nPmY)

The Second Price Auction: N-Bidders, One-ltem

Maximum Social Surplus: The Second Price Auction defines the
allocation rule so the highest bidder gets the item, satisfying MSS.

Dominant Strategy Incentive Compatible: The payment rule satisfies
DSIC by setting the payment to the second highest bid. Let’s see why.

If a bidder sets their bid above their valuation, there are two possibilities:

1. Nothing changes.

2. The overbid changes the bidder’s position from below the highest to
the highest, and the bidder must pay the second highest bid, which
otherwise would have been the highest bid, higher than the bidder’s
valuation. The bidder gets the item but must now pay more than their
valuation for the item, leading to a negative utility. This is undesirable.

If a bidder sets their bid below their valuation, there are two possibilities:

1. Nothing changes.

2. The underbid changes the bid from the highest to below the highest.
The bidder pays nothing but no longer gets the item. Otherwise the
bidder would get the item at a price lower than their valuation; their
utility has changed from positive to zero. This is also undesirable.

Polynomial Time: Below is the algorithm. It runs in O(n) time.

1. Collect all bids (i, b). = O(n)

2. Select the two highest bids (i, b), and (i, b), such that b, > b_. = O(n)

3. Allocate the item to bidder i, at the price b.,. » O(1)

We have shown that the Second Price Auction satisfies DSIC, MSS, and
polytime, therefore satisfying all ideal properties of an auction.

One-ltem, One-Bidder

Maximum Social Surplus: To satisfy this, we must allocate the item to
the highest (only) bidder, regardless of their bid.

Dominant Strategy Incentive Compatible: If we set the payment to the
bid value, the bidder will underbid. If we charge a constant price, the
payment may be higher than the bid. All we can do is charge nothing.

Revenue Maximization: If we drop MSS and permit not allocating the
item, we can set a price p so that the bidder is not allocated the item if b
<p, and if b > p, the bidder is allocated the item for the price p. Here we
have discovered that the ideal way to sell an item to an individual is to
set a constant price for it.

Optimal Auctions Through Deep Learning

Formulation as a Learning Problem

To define a learning problem, we must first select a loss function to
minimize. The original paper (Paul Ditting et al.) adopts the negated
revenue subject to DSIC (zero regret) as the loss function.

Given a sample S of L valuation profiles from F', we esti-
mate the empirical ex post regret for bidder ¢ as:

T/g\ti(w) =
1 L
L ; max (v (v, v)) w070 @),

and seek to minimize the empirical loss subject to the em-
pirical regret being zero for all bidders:

min  —4 350, S, e (0®)

weR

st rgt;(w) = 0, Vie N.

Neural Network Architecture and Performance

The architecture for RegretNet consists of an allocation network and a
payment network, with 640,000 sample valuation profiles for training.
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Possible Improvements

1. Change architecture from 2 hidden layers of 100 nodes (10*4 edges) to
3 layers of 10 nodes (300 edges) [9 hours » = 20 minutes to train]

2. Use a Generative Adversarial Network (GAN) to train RegretNet
(discriminator) and a generator that produces data to challenge the
discriminator. This could improve convergence rate and robustness.
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